3.9.82 \(\int \frac {x^8}{(a+b x^2+c x^4)^3} \, dx\) [882]

3.9.82.1 Optimal result
3.9.82.2 Mathematica [A] (verified)
3.9.82.3 Rubi [A] (verified)
3.9.82.4 Maple [C] (verified)
3.9.82.5 Fricas [B] (verification not implemented)
3.9.82.6 Sympy [F(-1)]
3.9.82.7 Maxima [F]
3.9.82.8 Giac [B] (verification not implemented)
3.9.82.9 Mupad [B] (verification not implemented)

3.9.82.1 Optimal result

Integrand size = 18, antiderivative size = 348 \[ \int \frac {x^8}{\left (a+b x^2+c x^4\right )^3} \, dx=-\frac {\left (b^2+20 a c\right ) x}{8 c \left (b^2-4 a c\right )^2}+\frac {x^5 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {x^3 \left (12 a b+\left (b^2+20 a c\right ) x^2\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {\left (b^3-16 a b c-\frac {b^4-18 a b^2 c-40 a^2 c^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} c^{3/2} \left (b^2-4 a c\right )^2 \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b^3-16 a b c+\frac {b^4-18 a b^2 c-40 a^2 c^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} c^{3/2} \left (b^2-4 a c\right )^2 \sqrt {b+\sqrt {b^2-4 a c}}} \]

output
-1/8*(20*a*c+b^2)*x/c/(-4*a*c+b^2)^2+1/4*x^5*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x 
^4+b*x^2+a)^2+1/8*x^3*(12*a*b+(20*a*c+b^2)*x^2)/(-4*a*c+b^2)^2/(c*x^4+b*x^ 
2+a)+1/16*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(b^3-16*a 
*b*c+(40*a^2*c^2+18*a*b^2*c-b^4)/(-4*a*c+b^2)^(1/2))/c^(3/2)/(-4*a*c+b^2)^ 
2*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/16*arctan(x*2^(1/2)*c^(1/2)/(b+(- 
4*a*c+b^2)^(1/2))^(1/2))*(b^3-16*a*b*c+(-40*a^2*c^2-18*a*b^2*c+b^4)/(-4*a* 
c+b^2)^(1/2))/c^(3/2)/(-4*a*c+b^2)^2*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
 
3.9.82.2 Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 381, normalized size of antiderivative = 1.09 \[ \int \frac {x^8}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {\frac {2 x \left (-2 b^4+11 a b^2 c-36 a^2 c^2+b^3 c x^2-16 a b c^2 x^2\right )}{\left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {4 \left (-2 a^2 c x+b^3 x^3+a b x \left (b-3 c x^2\right )\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {\sqrt {2} \sqrt {c} \left (-b^4+18 a b^2 c+40 a^2 c^2+b^3 \sqrt {b^2-4 a c}-16 a b c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \sqrt {c} \left (b^4-18 a b^2 c-40 a^2 c^2+b^3 \sqrt {b^2-4 a c}-16 a b c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt {b+\sqrt {b^2-4 a c}}}}{16 c^2} \]

input
Integrate[x^8/(a + b*x^2 + c*x^4)^3,x]
 
output
((2*x*(-2*b^4 + 11*a*b^2*c - 36*a^2*c^2 + b^3*c*x^2 - 16*a*b*c^2*x^2))/((b 
^2 - 4*a*c)^2*(a + b*x^2 + c*x^4)) + (4*(-2*a^2*c*x + b^3*x^3 + a*b*x*(b - 
 3*c*x^2)))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) + (Sqrt[2]*Sqrt[c]*(-b^4 
 + 18*a*b^2*c + 40*a^2*c^2 + b^3*Sqrt[b^2 - 4*a*c] - 16*a*b*c*Sqrt[b^2 - 4 
*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/((b^2 - 4* 
a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*Sqrt[c]*(b^4 - 18*a*b^2 
*c - 40*a^2*c^2 + b^3*Sqrt[b^2 - 4*a*c] - 16*a*b*c*Sqrt[b^2 - 4*a*c])*ArcT 
an[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)* 
Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(16*c^2)
 
3.9.82.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 345, normalized size of antiderivative = 0.99, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {1440, 1598, 1602, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^8}{\left (a+b x^2+c x^4\right )^3} \, dx\)

\(\Big \downarrow \) 1440

\(\displaystyle \frac {x^5 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\int \frac {x^4 \left (10 a-b x^2\right )}{\left (c x^4+b x^2+a\right )^2}dx}{4 \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 1598

\(\displaystyle \frac {x^5 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {\int \frac {x^2 \left (\left (b^2+20 a c\right ) x^2+36 a b\right )}{c x^4+b x^2+a}dx}{2 \left (b^2-4 a c\right )}-\frac {x^3 \left (x^2 \left (20 a c+b^2\right )+12 a b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{4 \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 1602

\(\displaystyle \frac {x^5 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {\frac {x \left (20 a c+b^2\right )}{c}-\frac {\int \frac {b \left (b^2-16 a c\right ) x^2+a \left (b^2+20 a c\right )}{c x^4+b x^2+a}dx}{c}}{2 \left (b^2-4 a c\right )}-\frac {x^3 \left (x^2 \left (20 a c+b^2\right )+12 a b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{4 \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {x^5 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {\frac {x \left (20 a c+b^2\right )}{c}-\frac {\frac {1}{2} \left (-\frac {-40 a^2 c^2-18 a b^2 c+b^4}{\sqrt {b^2-4 a c}}-16 a b c+b^3\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}dx+\frac {1}{2} \left (\frac {-40 a^2 c^2-18 a b^2 c+b^4}{\sqrt {b^2-4 a c}}-16 a b c+b^3\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}dx}{c}}{2 \left (b^2-4 a c\right )}-\frac {x^3 \left (x^2 \left (20 a c+b^2\right )+12 a b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{4 \left (b^2-4 a c\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {x^5 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {\frac {\frac {x \left (20 a c+b^2\right )}{c}-\frac {\frac {\left (-\frac {-40 a^2 c^2-18 a b^2 c+b^4}{\sqrt {b^2-4 a c}}-16 a b c+b^3\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (\frac {-40 a^2 c^2-18 a b^2 c+b^4}{\sqrt {b^2-4 a c}}-16 a b c+b^3\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {c} \sqrt {\sqrt {b^2-4 a c}+b}}}{c}}{2 \left (b^2-4 a c\right )}-\frac {x^3 \left (x^2 \left (20 a c+b^2\right )+12 a b\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}}{4 \left (b^2-4 a c\right )}\)

input
Int[x^8/(a + b*x^2 + c*x^4)^3,x]
 
output
(x^5*(2*a + b*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) - (-1/2*(x^3*( 
12*a*b + (b^2 + 20*a*c)*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (((b^2 
 + 20*a*c)*x)/c - (((b^3 - 16*a*b*c - (b^4 - 18*a*b^2*c - 40*a^2*c^2)/Sqrt 
[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(S 
qrt[2]*Sqrt[c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((b^3 - 16*a*b*c + (b^4 - 18 
*a*b^2*c - 40*a^2*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[ 
b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/c) 
/(2*(b^2 - 4*a*c)))/(4*(b^2 - 4*a*c))
 

3.9.82.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1440
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(-d^3)*(d*x)^(m - 3)*(2*a + b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2* 
(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^4/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x 
)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && Gt 
Q[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1598
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_.), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(a + b*x^2 + c*x^4)^(p + 1) 
*((b*d - 2*a*e - (b*e - 2*c*d)*x^2)/(2*(p + 1)*(b^2 - 4*a*c))), x] - Simp[f 
^2/(2*(p + 1)*(b^2 - 4*a*c))   Int[(f*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p + 1 
)*Simp[(m - 1)*(b*d - 2*a*e) - (4*p + 4 + m + 1)*(b*e - 2*c*d)*x^2, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && 
 GtQ[m, 1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1602
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_), x_Symbol] :> Simp[e*f*(f*x)^(m - 1)*((a + b*x^2 + c*x^4)^(p + 
1)/(c*(m + 4*p + 3))), x] - Simp[f^2/(c*(m + 4*p + 3))   Int[(f*x)^(m - 2)* 
(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p 
+ 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c 
, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (IntegerQ[p] | 
| IntegerQ[m])
 
3.9.82.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.13 (sec) , antiderivative size = 289, normalized size of antiderivative = 0.83

method result size
risch \(\frac {-\frac {b \left (16 a c -b^{2}\right ) x^{7}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {\left (36 a^{2} c^{2}+5 a \,b^{2} c +b^{4}\right ) x^{5}}{8 c \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {a b \left (14 a c +b^{2}\right ) x^{3}}{4 c \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {a^{2} \left (20 a c +b^{2}\right ) x}{8 c \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{2}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4} c +\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {b \left (16 a c -b^{2}\right ) \textit {\_R}^{2}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}+\frac {a \left (20 a c +b^{2}\right )}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} c +\textit {\_R} b}}{16 c}\) \(289\)
default \(\frac {-\frac {b \left (16 a c -b^{2}\right ) x^{7}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {\left (36 a^{2} c^{2}+5 a \,b^{2} c +b^{4}\right ) x^{5}}{8 c \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {a b \left (14 a c +b^{2}\right ) x^{3}}{4 c \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {a^{2} \left (20 a c +b^{2}\right ) x}{8 c \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{2}}+\frac {\frac {\left (-16 a b c \sqrt {-4 a c +b^{2}}+b^{3} \sqrt {-4 a c +b^{2}}-40 a^{2} c^{2}-18 a \,b^{2} c +b^{4}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {\left (-16 a b c \sqrt {-4 a c +b^{2}}+b^{3} \sqrt {-4 a c +b^{2}}+40 a^{2} c^{2}+18 a \,b^{2} c -b^{4}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 c \sqrt {-4 a c +b^{2}}\, \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{32 a^{2} c^{2}-16 a \,b^{2} c +2 b^{4}}\) \(420\)

input
int(x^8/(c*x^4+b*x^2+a)^3,x,method=_RETURNVERBOSE)
 
output
(-1/8*b*(16*a*c-b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^7-1/8*(36*a^2*c^2+5*a*b^ 
2*c+b^4)/c/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5-1/4/c*a*b*(14*a*c+b^2)/(16*a^2*c 
^2-8*a*b^2*c+b^4)*x^3-1/8*a^2*(20*a*c+b^2)/c/(16*a^2*c^2-8*a*b^2*c+b^4)*x) 
/(c*x^4+b*x^2+a)^2+1/16/c*sum((-b*(16*a*c-b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)* 
_R^2+a*(20*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^4))/(2*_R^3*c+_R*b)*ln(x-_R),_ 
R=RootOf(_Z^4*c+_Z^2*b+a))
 
3.9.82.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3725 vs. \(2 (302) = 604\).

Time = 0.45 (sec) , antiderivative size = 3725, normalized size of antiderivative = 10.70 \[ \int \frac {x^8}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate(x^8/(c*x^4+b*x^2+a)^3,x, algorithm="fricas")
 
output
1/16*(2*(b^3*c - 16*a*b*c^2)*x^7 - 2*(b^4 + 5*a*b^2*c + 36*a^2*c^2)*x^5 - 
4*(a*b^3 + 14*a^2*b*c)*x^3 + sqrt(1/2)*((b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^ 
5)*x^8 + a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3 + 2*(b^5*c^2 - 8*a*b^3*c^3 
 + 16*a^2*b*c^4)*x^6 + (b^6*c - 6*a*b^4*c^2 + 32*a^3*c^4)*x^4 + 2*(a*b^5*c 
 - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*x^2)*sqrt(-(b^7 - 35*a*b^5*c + 280*a^2*b^ 
3*c^2 + 1680*a^3*b*c^3 + (b^10*c^3 - 20*a*b^8*c^4 + 160*a^2*b^6*c^5 - 640* 
a^3*b^4*c^6 + 1280*a^4*b^2*c^7 - 1024*a^5*c^8)*sqrt((b^4 - 50*a*b^2*c + 62 
5*a^2*c^2)/(b^10*c^6 - 20*a*b^8*c^7 + 160*a^2*b^6*c^8 - 640*a^3*b^4*c^9 + 
1280*a^4*b^2*c^10 - 1024*a^5*c^11)))/(b^10*c^3 - 20*a*b^8*c^4 + 160*a^2*b^ 
6*c^5 - 640*a^3*b^4*c^6 + 1280*a^4*b^2*c^7 - 1024*a^5*c^8))*log((35*a*b^6 
- 1491*a^2*b^4*c + 15000*a^3*b^2*c^2 + 10000*a^4*c^3)*x + 1/2*sqrt(1/2)*(b 
^10 - 17*a*b^8*c - 392*a^2*b^6*c^2 + 5696*a^3*b^4*c^3 - 23680*a^4*b^2*c^4 
+ 32000*a^5*c^5 - (b^13*c^3 - 72*a*b^11*c^4 + 1200*a^2*b^9*c^5 - 8960*a^3* 
b^7*c^6 + 34560*a^4*b^5*c^7 - 67584*a^5*b^3*c^8 + 53248*a^6*b*c^9)*sqrt((b 
^4 - 50*a*b^2*c + 625*a^2*c^2)/(b^10*c^6 - 20*a*b^8*c^7 + 160*a^2*b^6*c^8 
- 640*a^3*b^4*c^9 + 1280*a^4*b^2*c^10 - 1024*a^5*c^11)))*sqrt(-(b^7 - 35*a 
*b^5*c + 280*a^2*b^3*c^2 + 1680*a^3*b*c^3 + (b^10*c^3 - 20*a*b^8*c^4 + 160 
*a^2*b^6*c^5 - 640*a^3*b^4*c^6 + 1280*a^4*b^2*c^7 - 1024*a^5*c^8)*sqrt((b^ 
4 - 50*a*b^2*c + 625*a^2*c^2)/(b^10*c^6 - 20*a*b^8*c^7 + 160*a^2*b^6*c^8 - 
 640*a^3*b^4*c^9 + 1280*a^4*b^2*c^10 - 1024*a^5*c^11)))/(b^10*c^3 - 20*...
 
3.9.82.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^8}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Timed out} \]

input
integrate(x**8/(c*x**4+b*x**2+a)**3,x)
 
output
Timed out
 
3.9.82.7 Maxima [F]

\[ \int \frac {x^8}{\left (a+b x^2+c x^4\right )^3} \, dx=\int { \frac {x^{8}}{{\left (c x^{4} + b x^{2} + a\right )}^{3}} \,d x } \]

input
integrate(x^8/(c*x^4+b*x^2+a)^3,x, algorithm="maxima")
 
output
1/8*((b^3*c - 16*a*b*c^2)*x^7 - (b^4 + 5*a*b^2*c + 36*a^2*c^2)*x^5 - 2*(a* 
b^3 + 14*a^2*b*c)*x^3 - (a^2*b^2 + 20*a^3*c)*x)/((b^4*c^3 - 8*a*b^2*c^4 + 
16*a^2*c^5)*x^8 + a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3 + 2*(b^5*c^2 - 8* 
a*b^3*c^3 + 16*a^2*b*c^4)*x^6 + (b^6*c - 6*a*b^4*c^2 + 32*a^3*c^4)*x^4 + 2 
*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*x^2) - 1/8*integrate(-(a*b^2 + 2 
0*a^2*c + (b^3 - 16*a*b*c)*x^2)/(c*x^4 + b*x^2 + a), x)/(b^4*c - 8*a*b^2*c 
^2 + 16*a^2*c^3)
 
3.9.82.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4558 vs. \(2 (302) = 604\).

Time = 1.93 (sec) , antiderivative size = 4558, normalized size of antiderivative = 13.10 \[ \int \frac {x^8}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate(x^8/(c*x^4+b*x^2+a)^3,x, algorithm="giac")
 
output
-1/64*(2*b^13*c^4 - 68*a*b^11*c^5 + 688*a^2*b^9*c^6 - 2688*a^3*b^7*c^7 + 2 
048*a^4*b^5*c^8 + 11264*a^5*b^3*c^9 - 20480*a^6*b*c^10 - sqrt(2)*sqrt(b^2 
- 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^13*c^2 + 34*sqrt(2)*sqrt(b^2 - 
4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^11*c^3 + 2*sqrt(2)*sqrt(b^2 - 4 
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^12*c^3 - 344*sqrt(2)*sqrt(b^2 - 4* 
a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^9*c^4 - 60*sqrt(2)*sqrt(b^2 - 4 
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^10*c^4 - sqrt(2)*sqrt(b^2 - 4*a* 
c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^11*c^4 + 1344*sqrt(2)*sqrt(b^2 - 4*a* 
c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^7*c^5 + 448*sqrt(2)*sqrt(b^2 - 4* 
a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^8*c^5 + 30*sqrt(2)*sqrt(b^2 - 4 
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^9*c^5 - 1024*sqrt(2)*sqrt(b^2 - 
4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^5*c^6 - 896*sqrt(2)*sqrt(b^2 
- 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^6*c^6 - 224*sqrt(2)*sqrt(b^ 
2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^7*c^6 - 5632*sqrt(2)*sqrt 
(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b^3*c^7 - 1536*sqrt(2)*s 
qrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^4*c^7 + 448*sqrt(2) 
*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^5*c^7 + 10240*sqr 
t(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^6*b*c^8 + 5120*sq 
rt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^5*b^2*c^8 + 768* 
sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*b^3*c^8 -...
 
3.9.82.9 Mupad [B] (verification not implemented)

Time = 16.90 (sec) , antiderivative size = 9575, normalized size of antiderivative = 27.51 \[ \int \frac {x^8}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Too large to display} \]

input
int(x^8/(a + b*x^2 + c*x^4)^3,x)
 
output
atan(((((5242880*a^7*c^8 - 256*a*b^12*c^2 + 61440*a^3*b^8*c^4 - 655360*a^4 
*b^6*c^5 + 2949120*a^5*b^4*c^6 - 6291456*a^6*b^2*c^7)/(512*(b^12*c + 4096* 
a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^ 
4*c^5 - 6144*a^5*b^2*c^6)) - (x*(-(b^17 + b^2*(-(4*a*c - b^2)^15)^(1/2) - 
1720320*a^8*b*c^8 + 1140*a^2*b^13*c^2 - 10160*a^3*b^11*c^3 + 34880*a^4*b^9 
*c^4 + 43776*a^5*b^7*c^5 - 680960*a^6*b^5*c^6 + 1863680*a^7*b^3*c^7 - 55*a 
*b^15*c - 25*a*c*(-(4*a*c - b^2)^15)^(1/2))/(512*(1048576*a^10*c^13 + b^20 
*c^3 - 40*a*b^18*c^4 + 720*a^2*b^16*c^5 - 7680*a^3*b^14*c^6 + 53760*a^4*b^ 
12*c^7 - 258048*a^5*b^10*c^8 + 860160*a^6*b^8*c^9 - 1966080*a^7*b^6*c^10 + 
 2949120*a^8*b^4*c^11 - 2621440*a^9*b^2*c^12)))^(1/2)*(256*b^11*c^3 - 5120 
*a*b^9*c^4 - 262144*a^5*b*c^8 + 40960*a^2*b^7*c^5 - 163840*a^3*b^5*c^6 + 3 
27680*a^4*b^3*c^7))/(32*(b^8*c + 256*a^4*c^5 - 16*a*b^6*c^2 + 96*a^2*b^4*c 
^3 - 256*a^3*b^2*c^4)))*(-(b^17 + b^2*(-(4*a*c - b^2)^15)^(1/2) - 1720320* 
a^8*b*c^8 + 1140*a^2*b^13*c^2 - 10160*a^3*b^11*c^3 + 34880*a^4*b^9*c^4 + 4 
3776*a^5*b^7*c^5 - 680960*a^6*b^5*c^6 + 1863680*a^7*b^3*c^7 - 55*a*b^15*c 
- 25*a*c*(-(4*a*c - b^2)^15)^(1/2))/(512*(1048576*a^10*c^13 + b^20*c^3 - 4 
0*a*b^18*c^4 + 720*a^2*b^16*c^5 - 7680*a^3*b^14*c^6 + 53760*a^4*b^12*c^7 - 
 258048*a^5*b^10*c^8 + 860160*a^6*b^8*c^9 - 1966080*a^7*b^6*c^10 + 2949120 
*a^8*b^4*c^11 - 2621440*a^9*b^2*c^12)))^(1/2) - (x*(b^8 + 800*a^4*c^4 + 31 
4*a^2*b^4*c^2 + 208*a^3*b^2*c^3 - 36*a*b^6*c))/(32*(b^8*c + 256*a^4*c^5...